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ABSTRACT

Over 30 hours of airborne measurement of the atmospheric backscatter coefficient (-1 at
10.6 um are reported, for four different regions of the Northern Hemisphere outside the UK.
at aftitudes up to 13 km. The results exhibit great diversity. In several recordings (=)
remains constant within a factor of three over large distances and height intervals: in others
over four orders of magnitude change is observed. The value of B(-) rarely falls below the
sensitivity limit of the equipmentof ~ 2.2 x 1001 Y m~1sr 1. ¥t such findings are typical of the
atmosphere as a whole they strongly support the conclusion that 1) airborne laser radars for
the measurement of true airspeed. and wind shear detection and warning at iow levels.
would have good reliability and 2) a Laser Atmospheric Wind Sounder (LAWS) for global
wind field measurement would provide reliable information for a very large fraction of
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1. INTRODUCTION

The airborne LAser True Air Speed (LATAS) system designed and built at RSRE has been operated
in a flying programme in the HS125 aircraft at RAE Bedford for the five years 1981-6. The equip-
ment operates by heterodyne measurement of the relative Doppler shift between the transmitted
taser frequency and return radiation scattered by atmospheric aerosols. The LATAS system has
been described in several articles, and studied in various flight trials including measurement of true
airspeed, advance detection and warning of wind shear and microbursts. and pressure error
calibration {1.2]. An additional and important par of the tlight programme has been measurement of
the atmospheric backscatter coefficient (1) which is defined as the fraction of the incident iaser
energy scattered from a 1 m path along the beam into unit solid angle in the backward direction (and
thus has the units m™1 sr°1 ). Values of (=) may be derived from the magnitude of the Doppler signal
and the calibration factor of the equipment.

This report summarizes measurements made during flights outside the United Kingdom: corres-
ponding measurements within the UK will be presented in a later publication. The present
compendium thus includes a sequence of flights across the Arctic to North America and return in
June/July 1982, ten flights in Colorado in June/July 1882 during the JAWS (Joint Airport Weather
Studies) programme, three tours to Gibraitar in December 1981, June 1982 and February 1983 and
a brief visit to Norway and into the Arctic Circle in March 1986. Measurements were made during
climbs to the maximum altitude of the aircraft (~ 13 kmy). in transit flights at constant altitude over
several hundred kilometres. and on most descents. The results are shown as a sequence of
diagrams with (7). static air temperature, altitude and time variously plotted.

The purpose of compiling these backscatter measurements has been two fold: firstly to establish an
envelope of reliable performance tor aircraft operation with measurement of true arspeed by laser
Doppler scattering from aerosols. The second aim has been to investigate atmospherc back-
scattering as widely as possible in order to provide a data base for evaluation of a satellite born Laser
Atmospheric Wind Sounder (LAWS) - which has also been called the Wind Profiling Lidar (WPLID:
Such laser based equipments to provide measurements of the Global Wind Field are presentiy
being considered for purposes of meteorology. atmospheric dynamics and improved weather
forecasting.

2. THE EQUIPMENT AND SIGNAL RECORDING

A complete block diagram of the LATAS airborne laser radar is shown in Figure 1. The HS125
aircraft and the optics head in its nose are shown in Figure 2. The radiation source 1s a 3 watt
continuous wave CO,, laser controlled to operate on the P20 transition at 10.6 um. The laser beam s
transmitted from a 150 mm diameter telescope lens and for backscatter measurements s usually
set to focus at 100 m range to give a depth of focus of about - 15 m (e this. together with the
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Figure 1. Block Diagram of the Airborne CO5 Laser Velocimeter Equipment
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Figure 2. The RSRE/RAE Airborne COo Laser Velocimeter (LATAS)
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beam diameter of ~ 10 mm at focus, defines the pencil-like probe volume from which the bulk of the
aerosol scattering emerges). Scattered radiation re-enters the system and is mixed with an optical
local oscillator derived from the original laser beam. Heterodyne detection takes place at a CMT
photodiode. Signal processing equipment is installed in the cabin of the aircraft and of the resultant
electrical signal, samples 25 us long are frequency analysed by a surface acoustic wave spectrum
analyser which outputs the spectra of successive samples to an A/D converter and integrator. These
individual Doppler spectra are then built up in the integrator and are recorded with instrument and
flight data on a tape recording system. Complete spectra can be recorded at rates up to 15 Hz but
the backscatter measurements were usually recorded every few seconds over an experimental
period in therange 0.2t0 0.8 s withupto 12 X 1 03 samples accumulated in the integrator to improve
the observed signal to noise ratio.

3. DERIVATION OF BACKSCATTER VALUES §(n)

The calibration of the coherent laser radar, and the derivation of an expression for the backscatter
coefficient (n) in the system is discussed at length in references [3] and [4].

In summary f(n) is given by

B0 = [335 X 10719/g] [(SNR) [kimy - mo)]™2/K) + 12 - 1]

where the likely limit of error on the numerical termis ~ 1% dB (a factor ~ 1.4} and Po is the actual
transmitted power of the laser beam. The mean observed SNR,, due to a singie sample is
given by

m1-1
SNR, = Y ogm)/(my-mg?e, 32
m=m0

and k = 0273 and K = 1. The summation is over the number of channels (my - m,) containing
detectable signals og(m), and o, is the root variance of the noise background.

In practice the computational algorithm that takes tape recorded data and calculates values of j(-)1s
quite complex; it is described in detail in reference [5]. It incorporates many factors that include
synchronous noise, sloping noise background etc. In the presence of strong backscatter the
Doppler peak is obvious and may be determined without ambiquity. For small signals however.
typically < § X root variance of the nuise, a random wide-ranging search across the spectrum couid
produce spurious peaks. Use of a narrow search window is a valuable safeguard against this
problem; such a search window is provided by the calculated airspeed V. derived from the on-board




pitot-static head and the air data computer. The search window is usually defined as V| = 3 knots: in
fact the difference between the laser airspeed Sp (after correction for aircraft angle of attack. laser
rigging angle etc) and V; provides a valuable diagnostic as illustrated for Fit No 761 in Section 5.
With these procedures signal peaks down to ~ 2.5 X root variance of the noise can be extracted in
practice with an acceptably small chance of recording a false signal.

With reference to equation 3.1 the minimum value of §(n) that can be obtained is = 2.2 x 1o
m1sr1forafull 12 x 103 integrations. Equation 3.1 with K = 1 provides a good approximation for
small signals and B{n) < 109m sl At higher values there is some tendency to overestimate 3(~)
but this is counteracted in practice by the limited dynamic range of the signal processing equipment
(see reference {4)).

4. THE AIRBORNE MEASUREMENTS

The approximate location of each of the flights is shown on Maps 1-4. For convenience the
measurements are presented in four groups as follows:

a) FLIGHTS OFF GIBRALTAR (MAP 1)

—

Flight 702: 4 Dec 1881, climb out of Gibraltar (figure 3 A, B}

Flight 740: 4 Jun 1982; climb out of Gibraltar (figure 4 A, B)

Flight 744: 7 Jun 1982; climb and transit Lisbon-north (figure 5 A, B)
Flight 847: 9 Feb 1983 climb and transit Lishon-Gibraltar (figure 6 A, B)
Flight 849: 12 Feb 1983; climb and transit Gibraltar-Lisbon (figure 7 A, B)
Flight 850: 12 Feb 1983; climb and transit Lisbon-north (figure 8 A, B)

o) BN ¢ B <N R

b) FERRY FLIGHTS: ICELAND-GREENLAND-NORTH AMERICA (MAPS 2, 3)
1 Flight 757: 22 Jun 1982; climb and transit Keflavik-SondreStromfjord (figure 8 A. B)
2 Flight 758: 22 Jun 1982; climb and transit SondreStromfjord-Frobisher (figure 10 A, B)
3 Flight 761: 24 Jun 1882; climb and transit Chicago-Denver (figure 11 A, B)
4 Flight 800: 19 Jul 1982, climb and transit Frobisher-SondreStromfjord (figure 12 A, B)
5 Fiight 801: 19 Jul 1982; climb and transit SondreStromfjor.'-Keflavik (figure 13 A. B)
6 Fiight 802: 20 Jul 1982; climb and transit Keflavik-Lossiemouth (figure 14 A B)
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¢! MEASUREMENTS DURING JAWS COLORADQO JUNE JULY 1982 (MAP -,
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b) Lost-lock on the laser and reduced sensitivity.

¢) Occasional short-lived icing up of the transmitting window - a rare occurrence usually on sharp
descent from high altitude into cloud.

d) Anexcessively strong signal which has saturated and overloaded the detector and/or recording
system.

€) The spectral peak appearing too close to the end of the spectrum so that background noise
cannot be evaluated.

fy Corrupted data due to a transcription error in the tape recorder and reader.

g) Change of experimental parameter during the measurement.

Wherever possible such causes have been identified and noted on the figures. In particular the
letters 'm’ and ‘s’ have usually been assigned to regions where the signals fell close to or below the
minimum detectable (m) and where saturation occurred (usually, but not always. in cloud) (s).

5. DISCUSSION

Consideration of the whole body of data shows that only Fit 702 and Fit 740 near Gibraltar present
major problems. These were the two earliest flights carried out betore the best procedures had been
established and the eduipment was not operated at optimum sensitivity (with the largest possible
number of integrations). For Fit 702 there is also indication of a malfunction that may have turther
reduced system sensitivity. In view of these considerations these two flights have been excluded
from the following analysis.

Inspection of the remaining 22 flights shows the following broad features:-

1 ‘Strong’ backscattering with B(n) > 5 X 1010 m Vsl is invariably found at low altitudes !ess
than 2 km AGL.

2 Such 'strong’ backscattering [B(r) > 5 X 1010 m1 sr‘1] occurs tor at least 60% of the recorc
throughout the troposphere.

3 Sharp reductions of backscatter (up to two orders of magnitude) are often associated with even
minor temperature inversions and may occur over very narrow height intervals. Simitarly very
large increases in backscattering can occur over very narrow height intervals and are usually
associated with sub-visible cirrus.
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4 Backscatter levels usually fall to a minimum at 8 to 10 km with typical values of |-
<100 m o1,

5 Above 10 km the backscattering usually increases with altitude particularly for penetration irto
the stratosphere. Usually there are no very obvious changes of backscatter level at the
tropopause.

6 Backscatter levels falling below the minimum detectable value of (-) x 2.2 x 101 m s

are comparatively rare and occupy less than ~ 1% of the record During climbs they rarely

persist over height intervals greater than a few tenths of a kilometre. In level fight they rarely
persist more than a few tens of kilometres.

In relation to this final point, and the general problems of low signal. inspection of the tight records
show that the only extended period (~ 12 minutes corresponding to ~ 100 km path) for which the
backscatter was at a consistently low level occurs in Flight 761 (hgure 11 B) for the time
47-59 minutes. in fact for this flight (and a number of other iengthy transits. eg Fits 801 and 802) the
equipment was set up with 4 x 103 integrations per measurement to give a minimum detectable
backscatter level of ~ 3.8 x 1071V m™1 sr°1. Thus the system was not operating at maximum
sensitivity. Nevertheless a number of diagnostic tests (figures 27-29) were carried out on this prece
of data to investigate whether an equipment malfunction could be responsibte tor the low signal
observed in the 12 minute period. The background noise level is plotted in figure 27 and shows no
anomalies; this establishes that the optical local oscillator and laser power were at the correct level
and the equipment should have been fully sensitive throughout the recording. However. the bimodal
distribution of the p(7) points evident for this 12 minute time interval in figure 11 B (with separation at
~2x10 1 mtsr? ), which also appears on a number of other records. 1s somewhat puzziing In
an effort to identify the source of this anomaly. the allowed search window was narrowed to
+ 1.5 knots from the standard = 3 knots, with the result shown in figure 28. However. the result was
very little changed and the bimodal distribution remained (compare figures 28 and 11 B}

The interpretation of this bimodal structure lies in equations 3.1 and 3.2, the discrete sampiing over
30 kHz channels in frequency space, and the criteria for accepting a signa! peak. Consider the
threshold to be set at a low value (eg 'signal’ peak only > 2.5 x rms noise); one or more adjacent
channels may register as 'signal’. If only one channel registers just above threshold it wili appear to
give a very low backscatter level but in fact has a very low probability of being genuine It two
adjacent channels register just above threshold the apparent backscatter level 1s approximately
doubled (hence the bimodal character), and the probability ot being a genuine measurement 1s
somewhat improved, at least for measurements with many integrations. Setting a much higher
threshold (eg > 5 X rms noise) would of course almost totally eliminate the chance of recording
spurious data points but would also fose many genuine measurements. These questions will be
discussed at greater length in a later paper. For present purposes a very low threshold ('signa!’
> 2 X rms noise) has been adopted in order to explore the lowest possible backscatter signal levels

Correspondingly the data must be interpreted with caution — any data point below ~ 10 m g

= e e e s
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is very unlikely to be genuine; above 2 X 107" mV 1) the probability of finding spurious data
rapidly decreases for measurements based on a full 12 x 103 integrations.

This point is further illustrated by the corresponding plots of Sp - Vi given in figure 29. The small
values of Sp - Vi show that for level flight with B(n) > 5 X 10T m Vsrlthe Doppler peak has been
determined with absolute confidence (note the Sp - Vi plots for Elapsed Time > 60 min, and refer to
figures 28 and 11 B). However for the interval 47-59 minutes the Sp - Vy points are distributed
almost randomly across the search window with only slightly increased density close to the Sp - Vi
= O regression line. We may conclude that in the absence of any extraneous effects (eg icing up of a
transmitting window — of which there is no suggestion in the observer's log) the backscatter
throughout this 12 min interval was most of the time at or below the appropriate maximum sensitivity
levelof ~ 38 x 1011 m1 g1,

As a final point it is worth noting that the only contemporary particle counting measurement was
made during Fit 790 and showed a very low count rate for backscatter levels around 1 0 10m gt
This single comparison hardly merits much interpretation but might suggest that backscattering at
10.6 pm at such levels is dominated by the integration of scatter from numbers of sma!l particles of
size considerably less than 1 ym.

6. CONCLUSION

At this stage no attempt has been made to relate all the measurements to the local meteorology and
general climatology. For the full body of data this would present a massive task and is currently only
being carried out for the JAWS flights and comparable and contemporary data from the ground-
based pulsed laser radar of the NOAA Wave Propagation Laboratory [6].

The results given in the foregoing figures are for measurements widely separated in space and time.
The most important findings would seem to be that:

1)} ‘strong’ backscattering with §(n) > 5 X 10010 m 1 srtis invariably found at low altitudes less
than 2 km AGL and occurs for about 60% of the time through the troposphere.

2) Backscatter values falling below B(n) ~ 2 X 10" m Vst are comparatively rare, occupying
less than ~ 1% of the tota! observation time.

If these findings are reasonably typical of atmospheric backscattering for the regions observed
during the period, and if duplicated in other parts of the globe, they would suggest that airborne laser
radars, operating at low altitudes for measurement of true airspeed and wind shear detection and

warning. would have good reliability. Furthermore a satellite borne Laser Atmospheric Wind
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Sounder (LAWS) for global wind measurement and with a maximum sensitivity for backscatter of

~2x 10T m 1 sr! would provide reliable information for a very large fraction of the time.
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Figure 3A. Climb out of Gibraltar, 4 December 1981. The observer’s log records cloud to
~ 1.5 km. In this early flight the number of integrations per measurement was set at only
4 x 103 to give a minimum detectable B(n) = 4 x 1011 m1 sr'1; above 2 km the
hackecattering fluctuated arnnind this value
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Figure 3B. Climb and transit near Gibraltar, 4 December 1281. The number of integrations
per measurement was set at 4 X 103 to give a minimum detectable (7} = 4 X 101
m1srl Apparently after 27 min the backscatter level fell beiow this value and is not
recorded. However, the observer's log records that “TV (display) threshold fell to half” at
about this time. This may indicate a severe equipment maifunction (eg loss of signal
amplification, laser power or more likely laser lock) and consequent gross reduction of
system sensitivity.
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Figure 4A. Climb out of Gibraltar, 4 June 1982. The observer's log records various haze
layers (h) to ~ 4 km and low signal above that. During this flight the number of integrations
per measurement was 6 X 103 to give a minimum detectable 3(n) x 3 X 101 m Vet

Lt OV Al n bmalimmabbacim~ fh H
abuve © Ritt thé LacrRacatiering fuctuated arcund thic value,



FLIGHT 740

-6. 14,
_7._ —12.
—10.

-8.-
— 8.

-g.|-
=1 6.

-18.+—
- 4-
-11.+ Iy
-12. L ' : : e.
2. 2. 40. 60. 8a. 108.

Elps. Time (mir)

Figure 4B. Climb and transit near Gibraltar, 4 June 1982. Data was not recorded for the
period 52-72 min. It is likely that the backscattering above 6 km fluctuated around

3x 101 m 1 gt
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Figure 5A. Climb out of Lisbon, 7 June 1982. Observer's log records slight haze at h.




FLIGHT 744

_B. 14,
L —12.
_18l
-8.
h . 8-
-S.—
? R - 6.
.y SR 2 P
AT SRR S L
—18. e RS gl o O
Rl wib %‘*‘“" L Ees T 14-
-11.— - 2.
Py ! | | ! ! 0.

a. 20. 40. 60. 80. 100. 120. 1408.
Elps. Time (mirn)

Figure 5B. Transit Lisbon-north, 7 June 1982. Observer’s Icg records a strong haze layer
on approaching the French coast at h.
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Figure 6A. Climb out of Lisbon, 9 February 1983. The occasional gaps are due to faulty
recording. The observer's log records haze up to 3 km and slight haze at 8 km. Note the
order of magnitude increase in 3(n) in the final 1 km of climb as the aircraft probably passes
through the low tropopause (see also the record for Flight 850 - tigure 8 - made 3 days later
with similar low tropopause).
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Figure 10A. Climb out of Sondre Stromfjord, 22 June 1982.
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the regions marked s the data shows saturating signals. Number of integrations:
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Figure 16B. Climb and return to Jeffco, 1 July 1982. The corresponding strong signals at
narrow height intervals are indicated by a¢, ap, ag. The few orb.ts at 13 km were flown just
south of Scotts Bluff.
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Figure 17A. Climb above Jeffco, 2 July 1982. There was strong and saturating signal from
3-4 km. The log records a sharp reduction in signal at ~ 7.1 km (r) and a thin cirrus layer on
ascent at c. There was a thin haze apparent at ~ 12.5 km and some turbulence (1) al
maximum altitude — possibly just into a jet stream.
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Figure 17B. Climb and descent above Jeffco, 2 Juty 1982, The thin cirrus layer iy ) was not
80 strong on descent (Co).
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Figure 18A. Climb above Jeftco, 7 July 1982. The log records very strong signal (and some
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uration) in regions aq, ap and signal at minimum detectable level at m.
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Figure 19A. Climb out of Jeffco, 9 July 1982. The observer's log records a thin layer of
cloud on ascent at 5.5 km and very uniform signal above that.
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Figure 19B. Climb and descent near Jeffco, 9 July 19€2. The observer's log also records

passing through cloud layers ¢ on descent at ~ 10 km as well as at ~ 6 km.
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Figure 20A. Climb flying east from Jeffco, 12 July 1982. The observer's log records that
signal had fallen to a very low level from ~ 9 to 11 km. Particularly in the regions marked m
the level was below the minimum detectable and there are several blank experiments.
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Figure 20B. Flight based on Jeffco, 12 July 1982. The signal in individual experiments was
often below the minimum detectable in the height region 9 to 11 km on ascent and
descent (m).
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Figure 21A. Climb out of Jeffco, 13 July 1982. At 6 km altitude the backscattering fell very
sharply and was occasionally below minimum detectable (m). The log records that the
signal was very strong and saturating over a narrow height interval (s) at ~ 11 km with no
visible cirrus; there was also the impression of a haze layer at 12.5 km.




FLIGHT 78

~J

-10.+— T

-12 I | | i |

2. = 30. 45, 60. 75,

Elps. Time (rir)

Figure 218 Chmb and rpid descent. Jetteo f0 Tuty T Fe

strona (and saturating) signat At s

o

-

r



1
FLIGHT 792
14, -
12.—
1
1 10.+
! E
L 8.F
P ~
27 6.+ =,
0
I
4.—
2._
" L ! ! | L
-12. -11. -10. -g, -8. -7. -B.
L_og (Beta (.. msr> .
L | | | | 1 L ] { ] 1

-78. -68. -50. -40. -30. -20. -18. 8. 10. 20. 3.
Static Temp ()

Figure 22A. Slow climb from Jeffco, 14 July 1982 in company with the King Air aircraft of
NCAR. This aircraft was equipped with a particle counter capable of registering particles
> 1 um. On ascent the log records particle counts of (2-4)/10 per cc up to ~ 5 km,
(B(m) Z 108 m™1 sr'1), few or nil recorded counts at ~ 6 km [B(m S 10710 m*1 sr' 1] and
occasional 1/10 per cc at ~ 7 km [B(n) ~ 1079 m™1 sr1).
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Figure 22B. Climb and descent, Jeffco, 14 July 1982 in company with the instrumented
King Air aircraft of NCAR. The log records similar findings far descent particle counts of
~ 1/10 per cc at 6 km [p(n) ~ 109 m! sr"] nsing to (1-2)/10 per cc at 5 km
B ~ 5 x 109 m ! s,
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Figure 23A. Chiimb out of Jetfco. 15 July 1982. The log records haze to ~ 4 km altitude and
the presence of alto-cumulus cloud between ~ 5 km and 6.5 krn — but the aircraft did not
pass through this cloud.
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Figure 23B. Climb out of Jeffco, 15 July 1982. Only the climb portion of the flight was
recorded; note the strong backscattering coefficient abor'e 11 km ~— which increased
steadily with altitude.
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Figure 24A. Climb (with several holds) out of Jeffco, 16 July 1982. The log records clear
sky, with some haze and very strong, often saturating, signal up to ~ 6 km. The signal fell to
minimum detectable at ~ 8.5 km. There was a darker haze layer recorded at 12.5 km and
the signal steadily increased up to 13 km.
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Figure 24B. Climb (with several holds) out of Jeffco, 16 July 1982. Only the climb portion of
the flight was recorded. Note the similarity witii the record of Flight 794 on the
previous day.
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Figure 25A. Climb out of Bodo, 13 March 1986. Observer’'s log: a - weather hazy: b - top of
haze at ~ 2.3 km,; ¢ - in slight haze and some cirrus cloud (data shows signal saturation).
d - above all haze; e - no visible cloud or haze, very strong signals.
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Figure 25B.  Climb out of Bodo, 19 March 1986. Observer's log. a - weather hazy.

b - top of haze at 2.3 km; ¢ - in slight haze and some cirrus cloud (data shows signal
saturation); d - above all haze: e - no visible cloud. very strc+ ; signal. (Note — elapsed time
from start of recording). Unfortunately the data for the short transit and descent part of the
flight were lost due to tape recorder malfunction.
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Figure 26A. Climb out of Bodo, 19 March 1986. The signal was fully saturated at s; the
observer's log records in and out of thin cirrus at ¢, and the data shows occasional
signal saturation.
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Figure 26B. Bodo to Stavanger, 19 March 1986. The few regions where the laser lost lock
are indicated by an L. (Note - elapsed time from start of recording.)
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Figure 27. Level of background noise through the part of Fit 761 containing low
1

backscatter values for the period 47-59 minutes. There is no obvious change of noise level

that would indicate any equipment malfunction at that time.
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Figure 28. Re-evaluation of data shown in Figure 118 with the search window narrowed to
Vi + 1.5 knots (+ 5 channels). There are very tew changes compared with the larger
standard search window (+ 3 knots) and in particular the bimodal distribution for
47-59 minutes is still evident (see discussion in text).
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Figure 29. Plots of S - vy versus srugisss o
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